3200=0+(6.4)(222)+(1/2)a(222)^2

Simple and best practice solution for 3200=0+(6.4)(222)+(1/2)a(222)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3200=0+(6.4)(222)+(1/2)a(222)^2 equation:



3200=0+(6.4)(222)+(1/2)a(222)^2
We move all terms to the left:
3200-(0+(6.4)(222)+(1/2)a(222)^2)=0
Domain of the equation: 2)a222^2)!=0
a!=0/1
a!=0
a∈R
We add all the numbers together, and all the variables
-(0+(6.4)222+(+1/2)a222^2)+3200=0
We multiply all the terms by the denominator
-(0+(6.4)222+(+1+3200*2)a222^2)=0
We calculate terms in parentheses: -(0+(6.4)222+(+1+3200*2)a222^2), so:
0+(6.4)222+(+1+3200*2)a222^2
determiningTheFunctionDomain (+1+3200*2)a222^2+0+(6.4)222
We add all the numbers together, and all the variables
6401a222^2+0+(6.4)222
We add all the numbers together, and all the variables
6401a222^2+1420.8
Back to the equation:
-(6401a222^2+1420.8)
We get rid of parentheses
-6401a222^2-1420.8=0
We move all terms containing a to the left, all other terms to the right
-6401a222^2=1420.8
a=1420.8/1
a=1420.8

See similar equations:

| 12=-7x+10 | | -4(5s-6)+21(s-8)=-146-2 | | -(s+5)+2s-3=-5 | | -6s+-14s+-1=19 | | 8(p-0.25=4(2p-0.5) | | 6(n+2)-4=n-4+2n | | |2x+2|+6=10 | | 16y=18y-8 | | x=3(17) | | 39x39=x | | -18=-(6k-19) | | 52+8x+1=3x-2 | | 9j-6+6=3(5j-2) | | 3(1+n)-5=3n-2 | | 9−7h=-8h | | x2+5=54 | | 7z−8=8z | | X2+2x-143=0 | | 2x=15-7/8 | | 4(n-2)=4n+6 | | 0.1x=0.2*(x+2) | | 8x-1+21x=115 | | 5x-3(x-2)=-8+5x-4 | | 17^2x-8+8=12 | | 2x+5=4-7 | | 2w^2-28w-48=0 | | 2*(4z-1)=3(z+2) | | x/12=48 | | 20+4/9r=-20 | | 13/2x=271/2 | | -2+3=-x+12 | | 3t+12=2t+20 |

Equations solver categories